Vector Skills

This vector has a magnitude V and an angle θ.
Finding the X and Y components of a vector is useful.

Remember: SOH CAH TOA

$\sin \theta=$ opp/hyp $\quad \cos \theta=$ adj $/$ hyp $\quad \tan \theta=$ opp/adj

For this vector:

$$
\begin{array}{cc}
\sin \theta=\text { opp/hyp } & \cos \theta=\mathrm{adj} / \mathrm{hyp} \\
\sin \theta=V_{y} / V & \cos \theta=V_{x} / V \\
\mathrm{~V}_{\mathrm{y}}=\mathrm{V} \sin \theta & \mathrm{Vx}=\mathrm{V} \cos \theta
\end{array}
$$

If you want to find the resultant of the sum of vectors, the "Component Method" of adding vectors is best:

Imagine that you have three vectors ($\mathbf{A}, \mathbf{B}, \mathbf{C}$) and you want to find the resultant (\mathbf{R}) of the sum of \mathbf{A}, \mathbf{B}, and \mathbf{C}.
First, break each vector up into its X and Y components. Each vector has its own angle that it makes with the X axis $\left(\theta_{A}, \theta_{B}, \theta_{C}\right)$. If the angle has a negative X component, then use the angle that the vector makes with the negative side of the X-axis (this is not the only way to deal with this situation).

If the component is pointing in the positive X , or positive Y direction, then use a positive value for its component when you add the components.
If the component is pointing in the negative X, or negative Y direction, then use a negative value for its component when you add the components.
Add all of the X components together. This gives you the resultant's X component (\mathbf{R}_{x}). Add all of the Y components together. This gives you the resultant's Y component (\mathbf{R}_{Y}). (A table is useful for this):

Vector	\mathbf{X} components	\mathbf{Y} components
\mathbf{A}	$(+/-) \mathbf{A} \cos \theta_{\mathbf{A}}$	$(+/-) \mathbf{A} \sin \theta_{\mathbf{A}}$
\mathbf{B}	$(+/-) \mathbf{B} \cos \theta_{\mathbf{B}}$	$(+/-) \mathbf{B} \sin \theta_{\mathbf{B}}$
\mathbf{C}	$(+/-) \mathbf{C} \cos \theta_{c}$	$(+/-) \mathbf{C} \sin \theta_{C}$
\mathbf{R}	$\mathbf{R}_{\mathbf{X}}$	$\mathbf{R}_{\mathbf{Y}}$

To get \mathbf{R}_{x} and \mathbf{R}_{y}, add the components above them in the table.
It is useful to now draw the resultant vector.

To get the magnitude of the resultant vector, use the Pythagorean theorem:

$$
\begin{gathered}
\mathbf{R}^{2}=\left(\mathbf{R}_{\mathrm{X}}\right)^{2}+\left(\mathbf{R}_{\mathrm{Y}}\right)^{2} \\
\mathbf{R}=\text { square root of }\left(\left(\mathbf{R}_{\mathrm{x}}\right)^{2}+\left(\mathbf{R}_{\mathrm{Y}}\right)^{2}\right)
\end{gathered}
$$

To get the angle (θ_{R}), that the resultant vector makes with the X -axis, use the inverse tangent of the opposite /adjacent:

$$
\theta_{R}=\tan ^{-1}\left(\left|\mathbf{R}_{Y}\right| /\left|\mathbf{R}_{X}\right|\right)
$$

$\left|\mathbf{R}_{Y}\right|$ is the absolute value of \mathbf{R}_{Y} $\left|\mathbf{R}_{\mathrm{x}}\right|$ is the absolute value of \mathbf{R}_{x}

Finding $\left(\theta_{\mathrm{R}}\right)$ this way gives you the angle that the resultant vector makes with the nearest side of the X -axis (the positive side or the negative side).

