College Skills/Tutorial Department

Vector Skills

This vector has a magnitude V and an angle θ . Finding the X and Y components of a vector is useful.

Remember: SOH CAH TOA

 $\sin \theta = \text{opp/hyp}$ $\cos \theta = \text{adj/hyp}$ $\tan \theta = \text{opp/adj}$

For this vector:

$\sin \theta = opp/hyp$	$\cos \theta = adj/hyp$
$\sin \theta = V_y/V$	$\cos \theta = V_x/V$
$V_y = V \sin \theta$	$Vx = V \cos \theta$

If you want to find the resultant of the sum of vectors, the "Component Method" of adding vectors is best:

Imagine that you have three vectors (**A**, **B**, **C**) and you want to find the resultant (**R**) of the sum of **A**, **B**, **and C**.

First, break each vector up into its X and Y components. Each vector has its own angle that it makes with the X axis (θ_A , θ_B , θ_C). If the angle has a negative X component, then use the angle that the vector makes with the negative side of the X-axis (this is not the only way to deal with this situation).

College Skills/Tutorial Department

If the component is pointing in the positive X, or positive Y direction, then use a positive value for its component when you add the components.

If the component is pointing in the negative X, or negative Y direction, then use a negative value for its component when you add the components.

Add all of the X components together. This gives you the resultant's X component (\mathbf{R}_X). Add all of the Y components together. This gives you the resultant's Y component (\mathbf{R}_Y). (A table is useful for this):

Vector	X components	Y components	
Α	(+/-) Α cos θ _A		(+/-) Α sin θ _A
В	(+/-) B cos θ _B		(+/-) B sin θ _B
С	(+/-) C cos θ _C		(+/-) C sin θ _C
R	Rx	RY	

To get \mathbf{R}_X and \mathbf{R}_Y , add the components above them in the table.

It is useful to now draw the resultant vector.

To get the magnitude of the resultant vector, use the Pythagorean theorem:

$$\mathbf{R}^2 = (\mathbf{R}_X)^2 + (\mathbf{R}_Y)^2$$

 \mathbf{R} = square root of ($(\mathbf{R}_X)^2 + (\mathbf{R}_Y)^2$)

To get the angle (θ_R), that the resultant vector makes with the X-axis, use the inverse tangent of the opposite /adjacent:

College Skills/Tutorial Department

$$\theta_{\rm R} = \tan^{-1} \left(\left| \mathbf{R}_{\rm Y} \right| / \left| \mathbf{R}_{\rm X} \right| \right)$$

 $|\mathbf{R}_{Y}|$ is the absolute value of \mathbf{R}_{Y} $|\mathbf{R}_{X}|$ is the absolute value of \mathbf{R}_{X}

Finding (θ_R) this way gives you the angle that the resultant vector makes with the nearest side of the X-axis (the positive side or the negative side).