

Logarithms

<u>Definition</u>: Logarithmic Form Exponential Form

 $\log_b x = y$ is equivalent to $b^y = x$

Many logarithmic problems can be solved by switching from one form to the other.

Logarithmic Exponential

Product Rule: $log_a uv = log_a u + log_a v$ $a^x \cdot a^y = a^{x+y}$

Quotient Rule: $\log_a \left(\frac{u}{v}\right) = \log_a u - \log_a v$ $\frac{a^x}{a^y} = a^{x-y}$

Power Rule: $\log_a u^n = n \log_a u$ $(a^x)^y = a^{xy}$

More Definitions: common log: $\log x = \log_{10} x$

natural log: $\ln x = \log_e x$

Miscellaneous: Logarithmic Exponential

 $\log_b b = 1 b^1 = b$

 $\log_b 1 = 0 \qquad \qquad b^0 = 1$

If $\log_b u = \log_b v$ then u=v If $b^x = b^y$ then x=y

Special Properties: $b^{\log_b x} = x$ and $\log_b b^x = x$

Change of Base: $\log_a b = \frac{\log_c b}{\log_c a}$