
 
  

 

Theorems in Linear Algebra, Lay, 3rd ed. 

Solutions of Linear Systems: A system of linear equations has either 

1. no solution, or 

2. exactly one solution, or 

3. infinitely many solutions. 

Augmented Matrices: If the augmented matrices of two linear systems are row equivalent, 
then the two systems have the same solution set, i.e., they are equivalent. 

Theorem 1 (Chap. 1): Uniqueness of the Reduced Echelon Form: Each matrix is 
row equivalent to one and only one reduced echelon matrix. 

Theorem 2 (Chap. 1): Existence and Uniqueness of Solutions to a SOLE: 
 

• A SOLE is consistent if and only if the rightmost column of its augmented matrix 
is not a pivot column. 

• A consistent SOLE has a unique solution iff there are no free variables. 

• A consistent SOLE has infinitely many solutions iff there is at least one free 
variable. 

 

Algebraic Properties of Rn: For all -u, -v, w- in Rn and all scalars c and d: 

(i) -u + -v = -v + -u (commutative) 
(ii) (-u + -v) + w- = -u + (-v + w- ) (associative) 

(iii) -u + -0 = -0 + -u = -u (identity) 

(v) c ( -u + -v) = c-u + c-v (distributive) 
(vi) (c + d )-u = c-u + d-u (distributive) 
(vii) c(d-u) = (cd)(-u) (associative) 

(iv) -u + (−-u) = −-u + -u = -0, 

where −-u denotes (−1)-u 
(inverse) (viii) 1-u = -u (identity) 

Theorem 3 (Chap. 1): If A is an m × n matrix, with columns -a1, . . . , -an (in Rm), and if 
-b is in Rm, the matrix equation 

A-x = -b 

has the same solution set as the vector equation 

x1-a1 + x2-a2 + . . . + xn-an = -b 

which, in turn, has the same solution set as the SOLE whose augmented matrix is 

[-a1 -a2 . . . -an -b] 
 

Existence of Solutions: The equation A-x = -b has a solution iff -b is a linear combination 
of the columns of A. 



 
  

 

Theorem 4 (Chap. 1): Let A be an m × n matrix. Then the following statements are 
logically equivalent. That is, for a particular A, either they are all true statements or 
they are all false. 

a. For each -b in Rm, the equation A-x = -b has a solution. 

b. Each -b in Rm is a linear combination of the columns of A. 

c. The columns of A span Rm. 

d. A has a pivot position in every row. 

Theorem 5 (Chap. 1): Linearity of Matrix-Vector Product: If A is an m × n ma- 
trix, -u and -v are vectors in Rn, and c is a scalar, then: 

a. A (-u + -v) = A-u + A-v; 

b. A(c-u) = c(A-u). 

Homogeneous Equation - Nontrivial Solution: The homogeneous equation A-x = -0 
has a nontrivial solution iff the equation has at least one free variable. 

Theorem 6 (Chap. 1): Suppose the equation A-x = -b is consistent for some given -b, and 

let p- be a solution. Then the solution set of A-x = -b is the set of all vectors of the form 
w- = p- + -vh, where -vh is any solution of the homogeneous equation A-x = -0. 

Linearly Independent Columns: The columns of a matrix A are linearly independent iff 
the equation A-x = -0 has only the trivial solution. 

Linear Independence for One Vector: A set containing only one vector -v is linearly 
independent iff -v /= -0. 

Linear Independence for Two Vectors: A set of two vectors {-v1, -v2} is linearly depen- 
dent iff at least one of the vectors is a multiple of the other. The set is linearly 
independent iff neither of the vectors is a multiple of the other. 

Theorem 7 (Chap. 1): Characterization of Linearly Dependent Sets: An indexed 
set S = {-v1, . . . , -vp} of two or more vectors is linearly dependent iff at least one of the 
vectors in S is a linear combination of the others. In fact, if S is linearly dependent 

and -v1 /= -0, then some -vj (with j > 1) is a linear combination of the preceding vectors, 

-v1, . . . , -vj−1. 

Theorem 8 (Chap. 1): More Vectors than Entries: If a set contains more vectors than 
there are entries in each vector, then the set is linearly dependent. That is, any set 

{-v1, . . . , -vp} in Rn is linearly dependent if p > n. 

Theorem 9 (Chap. 1): Set Containing the Zero Vector: If a set S = {-v1, . . . , -vp} in 

Rn contains the zero vector, then the set is linearly dependent. 



 
  

 

Properties of Linear Transformations: If T is a linear transformation, then 

(i) T (-0) = -0, and 

(ii) T ( c -u + d-v) = cT (-u) + dT (-v) for all vectors -u, -v in the domain of T and all scalars 
c, d. More generally 

T (c 1 -v1 + . . . + c p -vp) = c1T (-v1) + . . . + cpT (-vp). 

Theorem 10 (Chap 1.): Matrix of a Linear Transformation: Let T : Rn → Rm be 
a linear transformation. Then there exists a unique matrix A such that 

T (-x) = A-x for all -x in Rn 

In fact, A is the m × n matrix whose jth column is the vector T (-ej), where -ej is the 

jth column of the identity matrix in Rn: 

A = [ T (-e1) · · · T (-en) ] 

The matrix A is called the standard matrix for T . 

Theorem 11 (Chap. 1): One-to-One: Let T : Rn → Rm be a linear transformation. 

Then T is one-to-one iff the equation T (-x) = -0 has only the trivial solution. 

Theorem 12 (Chap. 1): One-to-One, Onto, Standard Matrix: Let T : Rn → Rm 

be a linear transformation and let A be the standard matrix for T . Then: 

a. T maps Rn onto Rm iff the columns of A span Rm; 

b. T is one-to-one iff the columns of A are linearly independent. 


