College Skills/Tutorial Department

Theorems in Linear Algebra, Lay, 3rd ed.

Solutions of Linear Systems: A system of linear equations has either

- 1. no solution, or
- 2. exactly one solution, or
- 3. infinitely many solutions.

Augmented Matrices: If the augmented matrices of two linear systems are *row equivalent*, then the two systems have the same solution set, i.e., they are *equivalent*.

Theorem 1 (Chap. 1): Uniqueness of the Reduced Echelon Form: Each matrix is row equivalent to one and only one reduced echelon matrix.

Theorem 2 (Chap. 1): Existence and Uniqueness of Solutions to a SOLE:

- A SOLE is consistent if and only if the rightmost column of its augmented matrix is *not* a pivot column.
- A consistent SOLE has a *unique* solution iff there are no free variables.
- A consistent SOLE has *infinitely many* solutions iff there is at least one free variable.

Algebraic Properties of R^n : For all u, v, w in R^n and all scalars c and d:

(i) $\boldsymbol{u} + \boldsymbol{v} = \boldsymbol{v} + \boldsymbol{u}$	(commutative)	(v) $C(\mathcal{U} + \mathcal{V}) = C\mathcal{H} + \mathcal{C}\mathcal{V}$	(distributive)
(ii) $(\boldsymbol{u} + \boldsymbol{v}) + \boldsymbol{w} = \boldsymbol{u} + (\boldsymbol{v} + \boldsymbol{w})$	(associative)	(vi) $(c+d) \mathbf{u} = c\mathbf{u} + d\mathbf{u}$	(distributive)
(iii) $\boldsymbol{u} + \boldsymbol{0} = \boldsymbol{0} + \boldsymbol{u} = \boldsymbol{u}$	(identity)	(vii) $c(d\mathbf{u}) = (cd)(\mathbf{u})$	(associative)
(iv) $\boldsymbol{u} + (-\boldsymbol{u}) = -\boldsymbol{u} + \boldsymbol{u} = \boldsymbol{0},$	(inverse)	(viii) 1 u = u	(identity)
where $-\boldsymbol{u}$ denotes $(-1)\boldsymbol{u}$			

Theorem 3 (Chap. 1): If A is an $m \times n$ matrix, with columns a_1, \ldots, a_n (in \mathbb{R}^m), and if b is in \mathbb{R}^m , the matrix equation

Ax = b

has the same solution set as the vector equation

$$x_1 \cdot a_1 + x_2 \cdot a_2 + \ldots + x_n \cdot a_n = b$$

which, in turn, has the same solution set as the SOLE whose augmented matrix is

$$[a_1 \ a_2 \ \dots \ a_n \ b]$$

Existence of Solutions: The equation Ax = b has a solution iff b is a linear combination of the columns of A.

- **Theorem 4 (Chap. 1):** Let A be an $m \times n$ matrix. Then the following statements are logically equivalent. That is, for a particular A, either they are all true statements or they are all false.
 - a. For each b in \mathbb{R}^m , the equation $A\mathbf{x} = b$ has a solution.
 - b. Each b in \mathbb{R}^m is a linear combination of the columns of A.
 - c. The columns of A span \mathbb{R}^m .
 - d. A has a pivot position in every row.
- **Theorem 5 (Chap. 1): Linearity of Matrix-Vector Product:** If A is an $m \times n$ matrix, \boldsymbol{u} and \boldsymbol{v} are vectors in \mathbb{R}^n , and \boldsymbol{c} is a scalar, then:
 - a. $A(\boldsymbol{u} + \boldsymbol{v}) = A\boldsymbol{u} + A\boldsymbol{v};$
 - b. $A(c\mathbf{u}) = c(A\mathbf{u})$.
- **Homogeneous Equation Nontrivial Solution:** The homogeneous equation Ax = 0 has a nontrivial solution iff the equation has at least one free variable.
- **Theorem 6 (Chap. 1):** Suppose the equation $A\mathbf{x} = \mathbf{b}$ is consistent for some given \mathbf{b} , and let \mathbf{p} be a solution. Then the solution set of $A\mathbf{x} = \mathbf{b}$ is the set of all vectors of the form $\mathbf{w} = \mathbf{p} + \mathbf{v}h$, where $\mathbf{v}h$ is any solution of the homogeneous equation $A\mathbf{x} = \mathbf{0}$.
- **Linearly Independent Columns:** The columns of a matrix *A* are linearly independent iff the equation Ax = 0 has *only* the trivial solution.
- **Linear Independence for One Vector:** A set containing only one vector \boldsymbol{v} is linearly independent iff $\boldsymbol{v} \neq 0$.
- **Linear Independence for Two Vectors:** A set of two vectors $\{v_1, v_2\}$ is linearly dependent iff at least one of the vectors is a multiple of the other. The set is linearly independent iff neither of the vectors is a multiple of the other.
- **Theorem 7 (Chap. 1): Characterization of Linearly Dependent Sets:** An indexed set $S = \{v_1, \ldots, v_p\}$ of two or more vectors is linearly dependent iff at least one of the vectors in S is a linear combination of the others. In fact, if S is linearly dependent and $v_1 \neq 0$, then some v_j (with j > 1) is a linear combination of the preceding vectors, v_1, \ldots, v_{j-1} .
- **Theorem 8 (Chap. 1): More Vectors than Entries:** If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, any set $\{v_1, \ldots, v_p\}$ in \mathbb{R}^n is linearly dependent if p > n.
- **Theorem 9 (Chap. 1): Set Containing the Zero Vector:** If a set $S = \{v_1, \ldots, v_p\}$ in R^n contains the zero vector, then the set is linearly dependent.

College Skills/Tutorial Department

Properties of Linear Transformations: If T is a linear transformation, then

- (i) T(0) = 0, and
- (ii) $T(c \boldsymbol{u} + d\boldsymbol{v}) = cT(\boldsymbol{u}) + dT(\boldsymbol{v})$ for all vectors $\boldsymbol{u}, \boldsymbol{v}$ in the domain of T and all scalars c, d. More generally $T(c_1 \boldsymbol{v}_1 + \ldots + c_p \boldsymbol{v}_p) = c_1 T(\boldsymbol{v}_1) + \ldots + c_p T(\boldsymbol{v}_p)$.

Theorem 10 (Chap 1.): Matrix of a Linear Transformation: Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then there exists a unique matrix A such that

$$T(\mathbf{x}) = A\mathbf{x}$$
 for all \mathbf{x} in \mathbb{R}^n

In fact, A is the $m \times n$ matrix whose jth column is the vector $T(e_j)$, where e_j is the jth column of the identity matrix in R^n :

$$A = [T(e_1) \cdots T(e_n)]$$

The matrix *A* is called the **standard matrix for** *T*.

- **Theorem 11 (Chap. 1): One-to-One:** Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then T is one-to-one iff the equation $T(\mathbf{x}) = 0$ has only the trivial solution.
- **Theorem 12 (Chap. 1): One-to-One, Onto, Standard Matrix:** Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and let A be the standard matrix for T. Then:
 - a. T maps R^n onto R^m iff the columns of A span R^m ;
 - b. T is one-to-one iff the columns of A are linearly independent.