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Math 5   Linear Algebra Theorems 
 

Theorems in Linear Algebra, Lay, 3rd ed. 
 
Solutions of Linear Systems: A system of linear equations has either 

 
1. no solution, or 

2. exactly one solution, or 

3. infinitely many solutions. 

Augmented Matrices: If the augmented matrices of two linear systems are row equivalent, 
then the two systems have the same solution set, i.e., they are equivalent. 

Theorem 1 (Chap. 1): Uniqueness of the Reduced Echelon Form: Each matrix is 
row equivalent to one and only one reduced echelon matrix. 

Theorem 2 (Chap. 1): Existence and Uniqueness of Solutions to a SOLE: 
 

A SOLE is consistent if and only if the rightmost column of its augmented matrix 
is not a pivot column. 

• A consistent SOLE has a unique solution iff there are no free variables. 

A consistent SOLE has infinitely many solutions iff there is at least one free 
variable. 

 

Algebraic Properties of Rn: For all u, v, w in Rn and all scalars c and d: 
(i) u + v = v + u (commutative) 
(ii) ( u + v) + w = u + ( v + w ) (associative) 
(iii) u + 0 = 0 + u = u (identity) 

(v) c( u + v) = c u + c v (distributive) 
(vi) (c + d) u = c u + d u (distributive) 
(vii) c(d u) = (cd)( u) (associative) 

(iv) u + (− u) = − u + u = 0, 
where − u denotes (−1) u 

(inverse) (viii) 1 u = u (identity) 

• 

• 
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Theorem 3 (Chap. 1): If A is an m × n matrix, with columns a1, . . . , an (in Rm), and if 
 b is in Rm, the matrix equation 

A x = b 

has the same solution set as the vector equation 

x1 a1 + x2 a2 + . . . + xn an = b 

which, in turn, has the same solution set as the SOLE whose augmented matrix is 
 

[ a1 a2 . . . an b] 
 
Existence of Solutions: The equation A x = b has a solution iff b is a linear combination 

of the columns of A. 
 
Theorem 4 (Chap. 1): Let A be an m n matrix. Then the following statements are 

logically equivalent. That is, for a particular A, either they are all true statements or 
they are all false. 

a. For each b in Rm, the equation A x = b has a solution. 

b. Each b in Rm is a linear combination of the columns of A. 

c. The columns of A span Rm. 

d. A has a pivot position in every row. 

Theorem 5 (Chap. 1): Linearity of Matrix-Vector Product: If A is an m × n ma- 
trix, u and v are vectors in Rn, and c is a scalar, then: 

a. A( u + v) = A u + A v; 

b. A(c u) = c(A u). 

Homogeneous Equation - Nontrivial Solution: The homogeneous equation A x = 0 
has a nontrivial solution iff the equation has at least one free variable. 

Theorem 6  (Chap.  1):  Suppose the equation A x = b is consistent for some given b, and  
let p be a solution.  Then the solution set of  A x = b is the set of all vectors of the form       
w = p + vh, where vh is any solution of the homogeneous equation A x = 0. 

Linearly Independent Columns: The columns of a matrix A are linearly independent iff 
the equation A x = 0 has only the trivial solution. 

Linear Independence for One Vector: A set containing only one vector v is linearly 
independent iff v /= 0. 

Linear Independence for Two Vectors: A set of two vectors v1, v2 is linearly depen- 
dent iff at least one of the vectors is a multiple of the other. The set is linearly 
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R → R 

R → R 

R → R 

independent iff neither of the vectors is a multiple of the other. 

Theorem 7 (Chap. 1): Characterization of Linearly Dependent Sets: An indexed 
set S = v1, . . . , vp of two or more vectors is linearly dependent iff at least one of the 
vectors in  S is a linear combination of the others.  In fact,  if S is linearly dependent   
and v1 /= 0, then some vj (with j > 1) is a linear combination of the preceding vectors, 
 v1, . . . , vj−1. 

Theorem 8 (Chap. 1): More Vectors than Entries: If a set contains more vectors than 
there are entries in each vector, then the set is linearly dependent. That is, any set 
{ v1, . . . , vp} in Rn is linearly dependent if p > n. 

Theorem 9 (Chap. 1): Set Containing the Zero Vector: If a set S = { v1, . . . , vp} in 
Rn contains the zero vector, then the set is linearly dependent. 

 

Properties of Linear Transformations: If T is a linear transformation, then 

(i) T ( 0) = 0, and 

(ii) T (c u + d v) = cT ( u)+ dT ( v) for all vectors u, v in the domain of T and all scalars 
c, d. More generally 
T (c1 v1 + . . . + cp vp) = c1T ( v1) + . . . + cpT ( vp). 

Theorem 10 (Chap 1.): Matrix of a Linear Transformation: Let T : n m be 
a linear transformation. Then there exists a unique matrix A such that 

 
T ( x) = A x for all x in Rn 

In fact, A is the m × n matrix whose jth column is the vector T ( ej), where ej is the 
jth column of the identity matrix in Rn: 

A = [ T ( e1) · · · T ( en) ] 

The matrix A is called the standard matrix for T . 

Theorem 11 (Chap. 1): One-to-One: Let T : n m be a linear transformation. 
Then T is one-to-one iff the equation T ( x) = 0 has only the trivial solution. 

Theorem 12 (Chap.  1):  One-to-One, Onto, Standard Matrix:  Let T : n m 
be a linear transformation and let A be the standard matrix for T . Then: 

a. T maps Rn onto Rm iff the columns of A span Rm; 

b. T is one-to-one iff the columns of A are linearly independent. 

Theorem 1 (Chap. 2): Algebraic Properties of Matrices: Let A, B, and C be ma- 
trices of the same size, and let c and d be scalars. 

(i) A + B = B + A (commutative) 
(ii) (A + B) + C = A + (B + C) (associative) 

(iii) A + 0 = 0 + A = A
(identity) 
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(v) c(A + B) = cA + cB (distributive) 
(vi) (c + d)A = cA + dA (distributive) 

(vii) c(dA) = (cd)A (associative) 

(iv) A + (−A) = −A + A = 0, 
where −A denotes (−1)A (inverse) (viii) 1A = A (identity) 

 

Row-Column (Dot Product) Rule for Computing AB: If AB is defined, then the (i, j)- 
entry in AB is the dot product of the ith row of A with the jth column of B. 

Theorem 2 (Chap. 2): Properties of Matrix Multiplication: Let A be an m n ma- 
trix, and let B and C have sizes for which indicated sums and products are defined. 
a. A(BC) = (AB)C (associative law of multiplication) 
b. A(B + C) = AB + AC (left distributive law) 
c. (B + C)A = BA + CA (right distributive law) 
d. c(AB) = (cA)B = A(cB) for any scalar c 
e. ImA = A = AIn (identity for matrix multiplication)
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Theorem 3 (Chap. 2): Properties of Transpose: Let A and B denote matrices whose 
sizes are appropriate for the following sums and products. 

a. (AT )T = A 
b. (A + B)T = AT + BT 
c. For any scalar c, (cA)T = cAT 
d. (AB)T = BT AT 

Uniqueness of Inverse: If A has an inverse, it is unique. We denote this inverse by A−1. 

Theorem 4 (Chap. 2): Inverse of a 2 2  Matrix:  Let A = 
a b 
c d 

1

. If ad − bc /= 0, 

then A is invertible and 
A−1 =

  1 d −b 
1

 
ad − bc −c a 

If ad bc = 0, then A is not invertible.  The quantity ad bc is called the determinant 
of A and is written det A. 

Theorem 5 (Chap.  2):  If A is an invertible n n matrix,  then  for  each b in n, the 
equation A x = b has the unique solution x = A−1 b. 

Theorem 6 (Chap. 2): a. If A is an invertible matrix, then A−1 is invertible and 

(A−1)−1 = A 

b. If A and B are n n invertible matrices, then so is AB, and the inverse of AB is 
the product of the inverses of A and B in the reverse order. That is, 

(AB)−1 = B−1A−1 
More generally, the product of any number of n n invertible matrices is invertible, 
and the inverse is the product of their inverses in the reverse order. 

c. If A is an invertible matrix, then so is AT , and the inverse of AT is the transpose of 
A−1. That is, 

 

Properties of Elementary Matrices: 

(AT )−1 = (A−1)T 

 

a. If an elementary row operation is performed on an m × n matrix A, the resulting 
matrix can be written as EA, where the m × m matrix E is created by performing 
the same row operation on Im. 

b. Each elementary matrix E is invertible. The inverse of E is the elementary matrix 
of the same type that transforms E back into I. 

Theorem 7 (Chap. 2): An n × n matrix A is invertible iff A is row equivalent to In, and 
in this case, any sequence of elementary row operations that reduces A to In also 
transforms In into A−1. 

Algorithm for Finding A−1: Row reduce the augmented matrix [A I]. If A is row equiv- 
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alent to I, then [A I] is row equivalent to [I A−1]. Otherwise, A does not have an 
inverse. 
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Theorem 8 (Chap. 2): The Invertible Matrix Theorem: Let A be a square n n 
matrix. Then the following statements are equivalent. That is, for a given A, the 
statements are either all true or all false. 
a. A is an invertible matrix. 
b. A is row equivalent to the n × n identity matrix. 
c. A has n pivot positions. 
cl. A has a pivot in every column. 
cll. A has a pivot in every row. 
d. The equation A x = 0 has only the trivial solution. 
e. The columns of A form a linearly independent set. 
f. The linear transformation x 1→ A x is one-to-one. 
g. The equation A x = b has at least one solution for each b in Rn. 
gl. The SOLE A x = b is consistent for all b in Rn. 
gll. The equation A x = b has at most one solution for each b in Rn. 
glll. The SOLE A x = b has no free variables. 
gllll. The equation A x = b has exactly one solution for each b in Rn. 
h. The columns of A span Rn. 
i. The linear transformation x 1→ A x maps Rn onto Rn. 
j. There is an n × n matrix C such that CA = I. 
k. There is an n × n matrix D such that AD = I. 
l. AT is an invertible matrix. 
m. The columns of A form a basis of Rn. 
n. Col A = Rn 

o. dim Col A = n 
p. rank A = n 
q. Nul A = { 0} 
ql. The kernel of the transformation x 1→ A x is { 0}. 
r. dim Nul A = 0 
rl. The nullity of A is 0. 
s. The number 0 is not an eigenvalue of A. 
t. The determinant of A is not zero. 
u. (Col A)⊥ = { 0}. 
v. (Nul A)⊥ = Rn. 
w. Row A = Rn. 

Invertibility: Let A and B be square matrices. If AB = I, then A and B are both invertible, 
with B = A−1 and A = B−1. 

Theorem 9 (Chap. 2): Invertible Linear Transformation: Let T :  n n be a 
linear transformation and let A be the standard matrix for T . Then T is invertible iff A  
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is an invertible matrix. In that case, the linear transformation S given by S( x) = A−1 x 
is the unique inverse function for T . 

 
Theorem 1 (Chap. 3): Cofactor Expansion of Determinant: The determinant of an 

n n matrix A can be computed by a cofactor expansion across any row or down any 
column. The expansion across the ith row is 

det A = ai1Ci1 + ai2Ci2 + · · · + ainCin = 
 

The cofactor expansion down the jth column is 
 

det A = a1jC1j + a2jC2j + · · · + anjCnj = 

 
n 

aij Cij 
j=1 

 
 
 

n 
aij Cij 

i=1 
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Theorem 2 (Chap. 3): Triangular Matrix: If A is a triangular matrix, then det A is 

the product of the entries on the main diagonal of A. 

Theorem 3 (Chap. 3): Properties of Determinants: Let A be a square matrix. 

a. If a multiple of one row of A is added to another row to produce a matrix B, then 
det B = det A. 

b. If two rows of A are interchanged to produce B, then det B = − det A. 

c. If one row of A is multiplied by k to produce B, then det B = k · det A. 

Theorem 4 (Chap. 3): Invertibility: A square matrix A is invertible iff det A /= 0. 

Theorem 5 (Chap. 3): Transpose: If A is an n × n matrix, then det AT = det A. 

Theorem 6 (Chap. 3): Multiplicative Property: If A and B are n n matrices, then 
det AB = (det A)(det B). 

Theorem 9 (Chap. 3): Area & Volume: If A is a 2 × 2 matrix, the area of the paral- 
lelogram determined by the columns of A is | det A|. If A is a 3 × 3 matrix, the volume  
of the parallelepiped determined by the columns of A is | det A|. 

Theorem 10 (Chap. 3: Linear Transformations of Area & Volume: Let T : R2 → 
R2 be the linear transformation determined by  a 2×2 matrix A.  If S is a parallelogram  
in R2, then 

{area of T (S)} = | det A| · {area of S} 

If T is determined by a 3 × 3 matrix A, and if S is a parallelepiped in R3, then 

{volume of T (S)} = | det A| · {volume of S} 

These conclusions also hold whenever S is a region in R2  with finite area or a region     
in R3 with finite volume. 

Vector Space Simple  Facts:  For  each vector u in vector space V  and each scalar c,  
a. 0 u = 0 
b. c 0 = 0 
c. − u = (−1) u 

 
Theorem 1 (Chap. 4): If v1, . . . , vp are in a vector space V , then Span v1, . . . , vp is a 

subspace of V . 

Theorem 2 (Chap. 4): The null space of an m n matrix A is a subspace of Rn. Equiv- 
alently, the set of all solutions to a system A x = 0 of m homogeneous linear equations  
in n unknowns is a subspace of Rn. 

Theorem 3 (Chap. 4): The column space of an m × n matrix A is a subspace of Rm. 
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Does Col A span Rm? The column space of an m × n matrix A is all of Rm iff the 
equation A x = b has a solution for each b in Rm. 

Theorem 4 (Chap. 4): An indexed set { v1, . . . , vp} of two or more vectors, with v1 /= 0, 
is linearly dependent iff some vj (with j > 1) is a linear combination of the preceding 
vectors, v1, . . . , vj−1. 

Theorem 5 (Chap. 4): Spanning Set Theorem: Let S = { v1, . . . , vp} be a set in V , 
and let H = Span { v1, . . . , vp}. 

a. If one of the vectors in S — say, vk — is a linear combination of the remaining vectors 
in S, then the set formed from S by removing vk still spans H. 

b. If H /= { 0}, some subset of S is a basis for H. 

Elementary Row Operations: Elementary row operations on a matrix do not affect the 
linear dependence relations among the columns of the matrix. 

Theorem 6 (Chap. 4): The pivot columns of a matrix A form a basis for Col A. 

Theorem 7 (Chap. 4): The Unique Representation Theorem : 
Let B = { b1, . . . , bn} be a basis for a vector space V .  Then for each  x in V , there exists 
a unique set of scalars c1, . . . , cn such that 

 x = c1 b1 + . . . + cn bn 
 

Theorem 8 (Chap.  4):  Coordinate Mapping:  Let  B  =  { b1, . . . , bn}  be  a  basis  for  a 
vector space V . Then the coordinate mapping x 1→ [ x]B is a one-to-one linear trans- 
formation from V onto Rn. 

Theorem 9 (Chap.  4):  If a vector space V has a basis =  b1, . . . , bn , then any set in 
V containing more than n vectors must be linearly dependent. 

Theorem 10 (Chap. 4): If a vector space V  has a basis of n vectors, then every basis of 
V must consist of exactly n vectors. 

Theorem 11 (Chap. 4): Dimension of Subspace: Let H be a subspace of a finite- 
dimensional vector  space  V .  Any  linearly  independent  set  in  H  can  be  expanded, 
if necessary, to a basis for H. Also, H is finite-dimensional and 

 
dim H ≤ dim V 
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Theorem 12 (Chap. 4): The 
Basis Theorem: Let V be a 
p-dimensional vector space, p 
1.  Any  linearly independent set 
of exactly p elements in V  is 
automatically a basis  for V . 
Any set of exactly p elements 
that spans V is automatically a 
basis for V . 

Number of Free & Pivot 
Variables: The dimension of 
Nul A is the number of free vari- 
ables in the equation A x = 0, 
and the dimension of Col A is 
the number of pivot columns in 
A. 

Theorem 13 (Chap. 4): If two 
matrices A and B are row 
equivalent, then their row 
spaces are the same. If B is in 
echelon form, the nonzero 
rows of B form a basis for the 
row space of A as well as for 
that of B. 

Theorem 14 (Chap. 4): The 
Rank Theorem: The 
dimensions of the column space 
and the row  space of an m   n 
matrix A are equal.  This 
common dimension,  the rank 
of   A, also equals the number 
of pivot positions in A and 
satisfies the equation 

rank 
A + 
dim 
Nul 
A = 
n 

Theorem 1 (Chap. 5): The 
eigenvalues of a triangular 
matrix are the entries on its 

main diagonal. 

Theorem 2 (Chap. 5): If v1, . . . , vr are 
eigenvectors that correspond to distinct 
eigenval- ues λ1, . . . , λr of an n × n matrix 
A, then the set { v1, . . . , vr} is linearly 
independent. 

Characteristic Equation: A scalar λ is an 
eigenvalue of an n        

λ satisfies the characteristic equation 

det(A − λI) = 0 

Theorem 4 (Chap. 5): If n n matrices A and 
B are similar, then they have the same 
characteristic polynomial and hence the same 
eigenvalues (with  the  same  multiplici- ties). 

Theorem 5 (Chap. 5): The 
Diagonalization Theorem: An n n 
matrix A is diago- nalizable if and only if A 
has n linearly independent eigenvectors. In 
fact, A = PDP −1, with D a diagonal 
matrix, if and only if the columns of P 
are n linearly independent 
eigenvectors of A. In this case, the diagonal 
entries of D are eigenvalues of A that 
correspond, respectively, to the eigenvectors 
in P . 

Theorem 6 (Chap. 5): An n × n matrix with n 
distinct eigenvalues is diagonalizable. 

Theorem 7 (Chap. 5): Let A be an n×n matrix 
whose distinct eigenvalues are λ1, . . . , λp. 

a. For 1 ≤ k ≤ p, the dimension of the 
eigenspace (geometric multiplicity) 
for λk is less than or equal to the 
(algebraic) multiplicity of the 
eigenvalue λk. 

b. The matrix A is diagonalizable if and 
only if the sum of the dimensions of 
the distinct eigenspaces equals n, and 
this happens if and only if the 
dimension of the eigenspace for each 
λk equals the (algebraic) multiplicity 
of λk. 
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c. If A is diagonalizable and 
Bk  is a basis for the 
eigenspace corresponding 
to λk      for each k, then 
the total collection of 
vectors in the sets B1, . . 
. , Bp forms an 
eigenvector basis for Rn. 

 
Theorem 1 (Chap. 6): Let u, v, and w  

be vectors in Rn, and let c be a scalar. Then 

a. u · v = v · u (commutative) 
b. ( u + v) · w = u · w + v · w  (distributive) 
c. (c u) · v = c( u · v) = u · (c v) (associative) 
d. u · u ≥ 0, and u · u = 0 if and only if u = 0 (positive definite) 

Properties (b) and (c) together produce: 

(c1 u1 + . . . + cp up) · w = c1( u1 · w ) + . . . + cp( up · w ) 

Norm of Scalar Times Vector: For any scalar c and vector v 
 

 c v  = |c| v  

Theorem 2 (Chap. 6): The Pythagorean Theorem: Two vectors u and v are orthog- 
onal if and only if u + v 2 = u 2 + v 2. 

Orthogonal Complement of a Subspace: If W is a subspace of Rn, then 
1. A vector x is in W ⊥ if and only if x is orthogonal to a set that spans W . 
2. W ⊥ is a subspace of Rn. 

Theorem 3 (Chap. 6): Let A be an m n matrix.  The orthogonal complement of the  
row space of A is the nullspace of A, and the orthogonal complement of the column 
space of A is the nullspace of AT : 

(Row A)⊥ = Nul A and (Col A)⊥ = Nul AT 
 
Theorem 4 (Chap. 6): If S = u1, . . . , up is an orthogonal set of nonzero vectors in n, 

then S is linearly independent and hence is a basis for the subspace spanned by S. 

Theorem 5 (Chap. 6: Let u1, . . . , up be  an  orthogonal  basis  for  a  subspace W  of n. 
For each y in W , the weights in the linear combination 

 
 y = c1 u1 + . . . + cp up 
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are given by 

c = y · uj  
 

(j = 1, . . . , p)  j u  · u 
j 

 

Theorem 6 (Chap. 6): An m × n matrix U has orthonormal columns iff U T U = I. 

Theorem 7 (Chap. 6): Let U be an m × n matrix with orthonormal columns, and let x 
and y be in Rn. Then 
a. U x = x  
b. (U x) · (U y) = x · y 
c. (U x) · (U y) = 0 if and only if x · y = 0 

Theorem 8 (Chap. 6): The Orthogonal Decomposition Theorem: Let W be a sub- 
space of Rn. Then each y in Rn can be written uniquely in the form 

 y = ŷ +  z 

where ŷ is in W  and  z is in W ⊥.  In fact, if    u1, . . . ,  up is any orthogonal basis of W , 
then 

ŷ =  
 y ·  u1  u + . . . +

 y · up
 u 

and  z =  y − ŷ. 

 

 u1 · u1  up · up 1 p 
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Orthogonal Projection Property: If y is in W = Span { u1, . . . , up}, then proj W y = y. 

Theorem 9 (Chap. 6): The Best Approximation Theorem: Let W be a subspace of 
n,  y any vectore in n, and ŷ the orthogonal projection of  y onto W .  Then ŷ is the 

closest point in W to y, in the sense that 

  y − ŷ            <  y − v  
 

for all  v in W  distinct from ŷ. 

Theorem 10 (Chap. 6): If u1, . . . , up is an orthonormal basis for a subspace W of n, 
then 

proj W y = ( y · u1) u1 + . . . + ( y · up) up 
If U = [ u1 u2 · · · up], then 

proj w y = UU T y for all y in  Rn 

Theorem 13 (Chap. 6): The set of least-squares solutions of A x = b coincides with the 
nonempty set of solutions of the normal equations AT A x = AT b. 

Theorem 14 (Chap. 6):  The matrix AT A is invertibile if and only if the columns of A 
are linearly independent. In this case, the equation A x = b has only one least-squares 
solution x̂, and it is given by 

x̂ = (AT A)−1AT b 

Theorem 16 (Chap. 6): The Cauchy-Schwarz Inequality: For all u, v in V , 

| u, v | ≤  u   v  

Theorem 17 (Chap. 6): The Triangle Inequality: For all u, v in V , 

  u + v   ≤  u   + v  

Theorem 1 (Chap. 7): If A is symmetric, then any two eigenvectors from different eigenspaces 
are orthogonal. 

Theorem 2 (Chap. 7): An n n matrix A is orthogonally diagonalizable if and only if A 
is a symmetric matrix. 

 

Theorem 4 (Chap. 7): The Principal Axes Theorem: Let A be an n n symmetric 
matrix. Then there is an orthogonal change of variable, x = P y, that transforms the 
quadratic form xT A x into a quadratic form yT D y with no cross-product term, i.e., 
with D a diagonal matrix. The columns of P are called the principal axes of the 
quadratic form xT A x. 

Theorem 5 (Chap. 7): Quadratic Forms and Eigenvalues: Let A be an n n sym- 
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metric matrix. Then a quadratic form xT A x is: 
a. positive definite iff the eigenvalues of A are all positive, 
b. negative definite iff the eigenvalues of A are all negative, or 
c. indefinite iff A has both positive and negative eigenvalues. 
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