This method is named for the "a" and the " c " in the general quadratic equation

$$
a x^{2}+b x+c
$$

Example: $\quad 6 x^{2}+17 x+5$
Notice that in this problem $\mathrm{a}=6$ and $\mathrm{c}=5$

1. Multiply a xc

$$
6 \times 5=30
$$

2. Factor that product:

$$
\begin{aligned}
30= & 1 \times 30 \\
& 2 \times 15 \\
& 3 \times 10 \\
& 5 \times 6
\end{aligned}
$$

3. Because " c " is positive (in our case $c=5$), we choose the two factors that add up to the middle term $2+15=17$. If " c " was negative, we'd be looking for the two factors that subtract to make the middle term.
4. Replace the middle term, 17 x , with $2 \mathrm{x}+15 \mathrm{x}$.

Notice that the new equation is equivalent to our original equation:

$$
6 x^{2}+17 x+5=6 x^{2}+2 x+15 x+5
$$

5. Because we now have four terms, this has become a grouping problem.

$$
\begin{aligned}
& 6 x^{2}+2 x+15 x+5 \\
& 2 \times(3 x+1)+5(3 x+1) \\
& (2 x+5)(3 x+1)
\end{aligned}
$$

