Convergence Tests for Series

Test for Divergence	
$\sum_{n=1}^{\infty} a_n$	 If lim_{n→∞} a_n ≠ 0, then the series diverges If lim_{n→∞} a_n = 0, then inconclusive
Geometric Series	a di seconda
$\sum_{n=0}^{\infty} ar^{n-1}$	 If r < 1, the series converges to 1-r If r ≥ 1, then the series diverges
Integral Test	
$\sum_{n=c}^{\infty} a_n \text{ where } c \ge 0 \text{ and } a_n = f(n) \text{ for all } n$	• $f(x)$ must be continuous, positive, and decreasing • If $\int_c^{\infty} f(x)dx$ converges, then the series converges • If $\int_c^{\infty} f(x)dx$ diverges, then the series diverges
<u><i>p</i>-series</u>	
$\sum_{n=1}^{\infty} \frac{1}{n^p}$	 If <i>p</i> > 1, then the series converges If <i>p</i> ≤ 1, then the series diverges
Comparison Test	
$\sum a_n$ and $\sum b_n$ where $0 \le a_n \le b_n$ for all n	• If $\sum b_n$ converges, then $\sum a_n$ converges • If $\sum a_n$ diverges, then $\sum b_n$ diverges
Limit Comparison Test	
$\sum a_n$ and $\sum b_n$ where $a_n, b_n > 0$ and $\lim_{n \to \infty} \frac{a_n}{b_n} = c > 0$	 If ∑ b_n converges, then ∑ a_n converges If ∑ a_n diverges, then ∑ b_n diverges To find b_n consider only the terms of a_n that have the greatest effect on the magnitude
Alternating Series Test	
$\sum_{n=1}^{\infty} (-1)^{n-1} b_n \text{ where } b_n > 0$	• Converges if $0 < b_{n+1} < b_n$ for all n and $\lim_{n \to \infty} b_n = 0$
Absolute Value Test	
$\sum a_n$	 If ∑ a_n converges, then ∑ a_n converges If the series of absolute values ∑ a_n is convergent, then the series is <u>absolutely</u> <u>convergent</u> If the series is convergent but not absolutely convergent, then the series is <u>conditionally</u> <u>convergent</u>
Ratio Test	
$\sum a_n \text{ with } \lim_{n \to \infty} \frac{ a_{n+1} }{ a_n } = L$	 If L < 1, then the series converges absolutely If L > 1 or L is infinite, then the series diverges If L = 1, then the test is inconclusive
Root Test	I f I < 1 then the equive equive the left l
$\sum a_n \text{ with } \lim_{n \to \infty} \sqrt[n]{a_n} = L$	 If L < 1, then the series converges absolutely If L > 1 or L is infinite, then the series diverges If L = 1, then the test is inconclusive

Flowchart for Convergence Tests for Series

